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The problem on the temperature field in an inhomogeneous one-dimensional arm of a thermocouple has been
solved by numerical methods with regard for both the distributed Peltier effect and the Thomson effect. It was
assumed that the charge carriers are nondegenerate. The temperature field of the thermocouple was optimized
for the regimes of maximum temperature drop and maximum refrigerating capacity. An optimum range of
change in the charge-carrier density gradient has been determined.

The widespread use of thermoelectric temperature transducers in practice poses the problem of increasing their
efficiency. This can be done first of all by increasing the thermoelectric Q of these devices. The values of this pa-
rameter attained to date in practice are far from the theoretically predicted limit [1]. As is known, a thermocouple with
an arm with properties changing along its length has a higher thermoelectric Q than a thermocouple with a homoge-
neous arm [2]. An investigation of thermocouples with arms with properties changing along their length, as a limiting
case of a complex thermocouple, [3] has shown that the thermoelectric Q of a thermocouple increases with increase in
its conductivity and decrease in the thermal e.m.f. from the hot to the cold end of the arm. A distinctly different ap-
proach to the solution of this problem has been proposed in [4]. This approach is based on solution of the boundary
problem on steady-state heat conduction. In this case, the optimum distribution of an impurity along the length of an
arm is determined by solving the variational problem with the use of the Pontryagin maximum principle. However, in
the case where this formalism is used, the problem should be substantially simplified. For example, in [4] it was as-
sumed that the thermal e.m.f., the heat conduction, and the electrical conduction depend only slightly on the tempera-
ture and the Thomson effect can be disregarded, which significantly diminishes the usefulness of the results obtained.
Moreover, only one regime was considered in this work — the regime of maximum temperature drop, while the re-
gime of maximum refrigerating capacity is the most interesting from the practical standpoint. In the present work, we
made an effort to solve the boundary problem of [4] with allowance for the temperature dependence of the kinetic co-
efficients and for the Thomson effect. Since the problem is nonlinear in this case, we numerically solved the boundary
problem and numerically optimized the solution obtained. The regimes of maximum temperature drop and maximum
refrigerating capacity were considered.

To determine the role of the Thomson effect, we solved both problems with and without regard for this ef-
fect. The last-mentioned case was considered earlier in [5]. The temperature field of the adiabatically isolated inhomo-
geneous one-dimensional arm of an unloaded thermocouple is defined, without regard for the Thomson effect, by the
steady-state heat-conduction equation [4]
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into which, as differentiated from [4], we introduced, for convenience, the parameter y = Jl/S. In the nondegenerate
case, the kinetic coefficients have the form
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The charge-carrier mobility u, the effective mass m, and the lattice heat conductivity χlat were selected such that the
thermoelectric properties correspond to the properties of a semiconductor material with Z = 3.0⋅10−3 K−1 at T1 = 300 K.

The parameter y introduced by us may be called the specific current. It is independent of the geometry of the
arm and is determined by only the physical properties of its material and temperature. The optimum value of the spe-
cific current is determined by the optimum current if the length and the cross section of the arm are numerically
equal. To determine the optimum current of an arm having a different geometry, it will suffice to multiply the specific
current by the ratio S/l.

Equation (1) used for solving the boundary problem can be written, with regard for the Thomson effect, as
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The carrier concentration is distributed along the arm, just as in [5], by the linear law

n = n0 (1 − gx) . (4)

In solving the boundary problem, we numerically optimized the temperature drop with respect to the specific current
and the density n0 at the cold end of the thermocouple arm at a definite value of g. The range of change in this quan-
tity 0 ≤ g ≤ 0.999 corresponds to the range of change in the ratio between the carrier densities c = n0

 ⁄ n1 at the cold
and hot ends of the arm 1 ≤ c ≤ 103.

The results of numerical solution of boundary problems (1), (2) and (2), (3) are presented in the figures. Fig-
ure 1 presents the temperature distribution along thermocouple arms at optimum values of the specific current in the
regime of maximum temperature drop. Curve 1 corresponds to a homogeneous arm (g = 0). In this case, the maximum
temperature is reached at the hot end of the arm. Below are curves of temperature distribution in inhomogeneous arms
with g = 0.9 and 0.999. If the charge carriers are distributed inhomogeneously, the maximum of the temperature de-
pendence shifts outside the region considered due to the distributed Peltier effect. This dependence is linear in charac-
ter at g = 0.9 and a curvature opposite in sign appears at g = 0.999. Due to the carrier density gradient, the
temperature of the cold end of the arm additionally decreases as a result of the partial or complete compensation of
the Joule heat. The optimization of the carrier density at the cold end of the arm leads to an increase in n0. An in-

Fig. 1. Dependence of the temperature distribution along the arm of a thermo-
couple on the coefficient g characterizing the impurity distribution in the arm:
g = 0 (1), 0.9 (2), and 0.999 (3).
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crease in the optimum density of charge carriers at the cold end is an adverse factor, since it leads to a decreases in
the thermal e.m.f. at this point and, consequently, to a partial decrease in the temperature drop. Since the Thomson
effect was not taken into account in [5], it is interesting to consider its contribution to the processes studied. Figure 2
shows, for comparison, the temperature distributions obtained with and without regard for the Thomson effect.

The dependences of the maximum temperature drop along the length of the arm of a thermocouple on the
logarithm of the ratio between the carrier densities at its cold and hot seals, obtained with and without regard for the
Thomson heat, are presented in Fig. 3a. As is seen from these graphs, there is no point in changing the charge-carrier
density by more than 8–10 times in the case of a linear temperature distribution because, at a large ratio between the
carrier densities at the cold and hot ends of the arm, this will lead to a very small change in the temperature drop.
For example, a tenfold change in the carrier density increases the temperature drop by 17% as compared to that of a
homogeneous arm, and a thousandfold change in the carrier density increases the temperature drop by 22% in the case
where the Thomson effect is not taken into account. When the Thomson effect is taken into account, the temperature
drops increase by 15.5 and 20%, respectively. Figure 3b presents the dependences of the optimum value of the specific
current on the logarithm of the ratio between the densities at the cold and hot seals of a thermocouple, obtained with
and without regard for the Thomson effect. It is seen that larger temperature drops are attained at higher currents. A
tenfold change in the carrier density increases the current by 26% and a thousandfold change in the carrier density in-
creases the current by almost 40%.

The regime of maximum refrigerating capacity is of much greater importance in practice. It is known that, in
this regime, the central region of the arm of a thermocouple is significantly overheated; therefore, it is very important

Fig. 2. Temperature distribution along the arm of a thermocouple determined
without regard for the Thomson effect (1) and with regard for this effect (2).

Fig. 3. Dependence of the maximum temperature drop (a) and the optimum
value of the specific current (b) on the ratio between the charge-carrier densi-
ties at the cold and hot ends of the arm of a thermocouple determined without
regard for the Thomson effect (1) and with regard for this effect (2).
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to know the influence of the distributed Peltier effect and the Thomson effect on the temperature field of the thermo-
couple operating in this regime. In this case, the boundary condition at the cold end of the arm should have the form
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

 x=0

 = αyT x=0 − q , (5)

where q = Ql/S is the refrigerating capacity of the arm whose length and cross section are numerically equal to unity.
The solution of problem (3), (5) shows that the absorption of the heat released due to the distributed Peltier

effect makes it possible to substantially decrease the overheating of the arm of a thermocouple or completely exclude
it. Figure 4a shows the load characteristics of an arm at different temperature drops. It is seen that the specific refrig-
erating capacity of the arm increases by the largest value when the carrier density changes by 10–30 times. At a tem-
perature drop of 60 K, a tenfold change in the carrier concentration causes the refrigerating capacity to increase by 3.3
times, and this capacity increases by 4.1 times when the carrier density changes by 25 times. As the temperature drop
decreases, the multiplicity of increase in the refrigerating capacity decreases and, at a zero temperature drop, reaches
1.25 and 1.44 respectively. It should be noted that, when the temperature drop decreases (with increase in the load),
the contribution of the Thomson effect becomes negligibly small for large density drops (curves 7 and 8). Figure 4b
shows the dependence of the optimum value of the specific current on the logarithm of the ratio between the carrier
densities at the cold and hot ends of the arm.

Thus, as the calculations show, the use of an inhomogeneous arm with a linear distribution of the carrier den-
sity along its length in a thermoelectric temperature transducer makes it possible to substantially increase the maximum
temperature drop in it and, consequently, to increase the refrigerating capacity of the transducer. In this case, the
Thomson effect should not be ignored, since its contribution is comparable to the contribution of the distributed Peltier
effect.

NOTATION

e, elementary charge, C; g, proportionality coefficient; h, Planck constant, J⋅sec; k, Boltzmann constant, J⋅K−1;
l, length of the arm of a thermocouple, m; m, effective mass of charge carriers, kg; n, density of charge carriers,
m−3; n0, density of charge carriers at the cold end of the arm of a thermocouple, m−3; n1, density of charge carriers
at the hot end of the arm of a thermocouple, m−3; Q, refrigerating capacity of the arm of a thermocouple, W; q, spe-
cific refrigerating capacity, W⋅m−1; S, cross section of the arm of a thermocouple, m2; T, temperature of the arm of a
thermocouple as a function of a coordinate, K; T1, temperature of the hot end of the arm of a thermocouple, K; u,

Fig. 4. Dependence of the specific maximum refrigerating capacity (a) and the
optimum value of the specific current (b) on the ratio between the charge-car-
rier densities at the cold and hot ends of the arm of a thermocouple at a tem-
perature drop of 60 K (1, 2), 40 K (3, 4), 20 K (5, 6), and 0 K (7, 8)
determined without regard for the Thomson effect (1, 3, 5, 7) and with regard
for this effect (2, 4, 6, 8).
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mobility of charge carriers, m2⋅V−1⋅sec−1; x, dimensionless coordinate, 0 ≤ x ≤ 1; y, specific current, A⋅m−1; Z, parame-
ter of thermoelectric efficiency, K−1; α, differential thermal e.m.f., V⋅K−1; σ, electrical conductivity, Ω−1⋅m−1; χ, heat
conductivity, W⋅m⋅K−1; χlet, lattice heat conductivity, W⋅m⋅K−1. Subscripts: lat, lattice.
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